TTC2022, Aomori, Oct. 11-14, 2022

Application of Nb₃Sn cavity for femtosecond-pulsed electron microscope

Jinfeng Yang

Osaka University

This study was proposed in collaboration with KEK and Osaka U.

Ultrafast electron microscopy using 0.5-cell Nb₃Sn SRF gun

proposed in collaboration with KEK and Osaka U.

Why 0.5-cell SRF gun in electron microscopy?

The first ultrafast electron microscopy using NC RF gun

developed at Osaka Univ.

TEM Imaging with 3-MeV fs e- pulses S-band NC RF gun RF pulses at 30Hz 10,000 pulses 10,000 pulses Specimen room 500 nm fs e- pulses x5,500 /IeV, 100fs, 30H Electron lenses The RF-acceleration technology is expected to be used in EM! Single-shot electron diffraction Imaging 1 pulse (single-shot) 189 CsI(Tl) scintillator MCCD 3.5m(H)x0.8m(D) single-crystal Au Compact High-Voltage Electron Microscopy (compact HVEM)

Single-shot electron diffraction imaging is available.

200nm Au particle

x11.000

100 pulses

0.5 Å⁻¹

However, for the NC RF gun, the averaged beam current is low & energy stability is not enough for EM.

Electron sources for electron microscopy

	Commercial TE/FE gun in high-voltage EM	NC RF gun at Osaka Univ.	0.5-cell SRF gun (this proposal)	
Accelerating type	DC	S-band RF, 1.4-cell	L-band RF, 0.5-cell	
Operational temperature	room temp.	room temp.	4.2 K with Nb ₃ Sn	
E _{cathode}	1~5 MV/m	50~70 MV/m	20~30 MV/m	
Beam energy	0.5 ~ 1.2MeV, 3MeV(max.)	1 ~ 3 MeV	0.7 ~ 1.3 MeV	
Bunch length	-	≤100 fs	≤50 fs	
Bunch charge	-	~1 pC	≤10 fC	
Repetition rate	-	30 Hz, 1 kHz at max.	1.3 GHz for cw operation	
Averaged current	~10 μA	30 pA, 1nA at max	13 μΑ	
Input RF power	-	2~7 MW (pulsed)	<1.5 W (cw)	
Energy spread (<i>∆E/E</i>)	10 ⁻⁵ ~ 10 ⁻⁶	10 ⁻⁵ in pulse	10 ⁻⁵ ∼ 10 ⁻⁶ in pulse	
Energy stability	10-6	10-4	10 ⁻⁵ ~ 10 ⁻⁶	

Both the averaged current and the energy stability in the 0.5-cell SRF gun are comparable to the e- beam in commercial high-voltage EM.

Cavity design of 0.5-cell SRF gun

Optimization of 0.5-cell SRF gun cavity

Beta = Normal Transif Stored Superac Operat Power (Q = Rs*Q = r/Q = Average Maximur Maximur Ratio (Peak-to	1.000000 ization factor trime factor energy onductor surf ing temperatu dissipation 1.0453E+1 280.126 Of 81.603 Of e magnetic fi n H (at Z,R = of peak fielc praverage rat	energy ace resistanc ure 0 Shunt mm Wake loss eld on the ou : 0.10021955,9, 5.17242,2.74 Is Bmax/Emax io Emax/E0	= 658 MV/m = = = impedance = Z*T*T = parameter = iter wall = 75784) = 824) = =	0.51100 869.64 0.635236 0.653493 2.000 510.653 1.7616E+0 0.1666 29978. 30229. 19.553 1.942 2.258	0 MeV 5 6 Joules 6 nanoOhm 0 K 5 mW 7 MOhm/m 6 MOhm/m 4 V/PC 1 A/m, 1.20413 7 A/m, 1.20413 7 A/m, 0.60895 7 mT/(MV/m) 4	m₩/cm^2 m₩/cm^2 3 Kilp.	
Wall se Segment	egments: t Zend (cm)	Rend (cm)	Ema× (MV/m)	Power (mW)	P∕A (m₩/cm^2)	dF/dZ (MHz/mm)	dF/dR (MHz/mm)
3 4 5 6 7 8	$\begin{array}{c} 0.0000\\ 0.10000\\ 0.20000\\ 5.0650\\ 5.0650\\ 5.7650\\ 12.000 \end{array}$	9.7370 9.8370 9.8370 4.9720 3.6000 2.0000 2.0000 2.0000	0.1844 0.1280 11.08 17.11 19.56 9.931	11.72 7.447 452.7 29.70 8.999 8.8213E-1	1.214 1.205 1.168 0.8039 0.2823 02 1.1259E-03	-0.3491 0.000 -9.097 1.782 3.919 0.000	-0.3482 -0.3474 -13.70 0.000 1.318 0.1094
			Total	510.7			
RF parameters Values							
Frequency [MHz]				1300			
_	quency [I	vii i2]					
Q ₀	at 2K (Rs=	=26.8 nΩ)			1.045 x 10	10	
Q ₀ r/C	quency [r at 2K (Rs= ξ [Ω]	=26.8 nΩ)			1.045 x 10 81.6	10	
Q ₀ r/C G=l	quency [r at 2K (Rs= ξ [Ω] Rs/Q [Ω]	=26.8 nΩ)			1.045 x 10 81.6 280	10	
Q ₀ r/C G=l E _{sp} /	quency [r at 2K (Rs= ξ [Ω] Rs/Q [Ω] /E _{acc}	-26.8 nΩ)			1.045 x 10 81.6 280 1.96	10	
Q ₀ r/C G=l E _{sp} /	quency (r at 2K (Rs= ξ [Ω] Rs/Q [Ω] /E _{acc} /E _{sp}	-26.8 nΩ)			1.045 x 10 81.6 280 1.96 1.94 (B _{sp} =	¹⁰ 38.0 mT)	
Q ₀ r/C G=I E _{sp} / E _c a	quency [r at 2K (Rs= [Ω] Rs/Q [Ω] /E _{acc} /E _{sp} at cathode	=26.8 nΩ) = [MV/m]			1.045 x 10 81.6 280 1.96 1.94 (B_{sp} =3 20 (E_{acc} =10 30 (E_{acc} =15	¹⁰ 38.0 mT) 0 MV/m) 5 MV/m)	

The Cavity is available to be conduction-cooled by a 1.5W cryo-cooler.

E & H fields on the surface of cavity

The peak surface electric field is less than the field on the cathode. $(E_{sp} < E_{cathode})$ Beam dynamics on 0.5-cell SRF gun simulated with GPT

Beam simulation results on 0.5-cell SRF gun

	•			
Parameters	E _{cathode} =20MV/m	E _{cathode} =30MV/m		
Laser pulse length [fs]	100 (FWHM)			
Laser spot size [µm]	200 (rms)			
Max. rep. rate [MHz]	1300			
Lunch phase	15°			
Beam energy [MeV]	0.83	1.31		
Bunch charge [fC]	1	1		
Bunch length [fs]	47	26		
Energy spread (∠E/E)	4.1 x 10 ⁻⁵	1.1 x 10 ⁻⁵		

At the lunch phase of 15°, the 0.5-cell SRF gun produces a short-bunch e- beam with the max. energy and small energy spread.

Simulated by GPT

Beam simulation with laser optimization

Optimize the laser spot size at $E_{cathode}$ =30MV/m,

 $\sigma_{laser} = 200 \mu m \rightarrow Q = 1 \text{fC}, \ \sigma_z = 26 \text{fs with } \Delta E/E = 1.1 \times 10^{-5}$ $\sigma_{laser} = 100 \mu m \rightarrow Q = 0.1 \text{fC}, \ \sigma_z = 24 \text{fs with } \Delta E/E = 4.6 \times 10^{-6} \& \varepsilon = 36 \text{ nm-rad}$ $\sigma_{laser} = 250 \mu m \rightarrow Q = 10 \text{fC}, \ \sigma_z = 40 \text{fs with } \Delta E/E = 6.8 \times 10^{-5} \& \text{ avg. current of } 13 \mu \text{A}$

Comparable to the beam in commercial high-voltage EM.

Beam dynamics: Comparison of 0.5-cell to 0.4-cell

Although the 0.4-cell gun can be operated at higher lunch phase to generate a short bunch and small energy-spread e- beam, the 0.5-cell SRF gun is enough!

- A conduction cooled L-band 0.5-cell Nb₃Sn SRF gun was proposed for ultrafast electron microscopy in collaboration with KEK and Osaka U.
 - The cavity design indicates that the RF power dissipation is 0.511W at $E_{cathode}$ =20MV/m and 1.15W at $E_{cathode}$ =30MV/m.
 - \rightarrow It is available to use a cryo-cooler cooling down the cavity to 4.2K.
 - The beam simulation shows that the 0.5-cell SRF gun can produce a 26-fs short-bunch e- beam with the energy spread of 1.1x10⁻⁵ at 1 fC/bunch. A high-current femtosecond e- beam is achievable with energy spread of 6.8x10⁻⁵ and averaged current of 13 μA.
 - → Both the energy spread and the averaged current are comparable to the beam in the commercial high-voltage electron microscopy.
- > Next step:

Nb₃Sn coating, RF tuning, magnetic field shield, and conduction cooling will be discussed ...