

Development of Cryocooler Systems for NCRF and SRF Cavity and Component Tests at LANL

Tsuyoshi Tajima, Paolo Pizzol^{*}, Eric Olivas, Evgenya Simakov, John Lewellen^{**} (*now at SNS, **now at SLAC)

TTC 2022 Meeting, Aomori, Japan, 11-14 October 2022

LA-UR-22-30566

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

Background

- We got an internal funding to develop this system in FY2021. It was a 1-year project.
- The main purpose was to develop a capability to cool down NCRF C-Band (5.7 GHz) copper cavities to enhance achievable gradient without using cryogen.
- A secondary purpose was to develop a capability to test SRF cavities without using liquid helium.

Background (Cont.)

- We found an existing chamber that can house a cryocooler we purchased, so we did not need to design the outer chamber.
- We designed and built inside parts such as a box with thermal radiation shield.
- We were able to cool down a c-band cavity and a 1.3-GHz single-cell cavity down to <5 K.
- This talk will cover the following
 - Some details of the cooling system with a cryocooler
 - Some cavity RF test results
 - A heating loss test and simulation results using a 1.3-GHz Nb cavity

We have purchased 3 cold heads and 2 compressors so far. They are all Sumitomo. We wanted to buy the ones from CryoMech, but the lead time was too long.

PECIFICATIONS			Purchased in SEP2022			Purchased one in SEP2020 and another one in SEP202	
Cold Head Model		RDK-101D	RDK-305D	RDK-205D	RDK-408D2	RDE-412D4	RDK-415D
1 st Stage Capacity	50 Hz	3.0 W @ 60 K	15 W @ 40 K	3.0 W @ 50 K	40 W @ 43 K	53 W @ 43 K	35 W @ 50 K
	60 Hz	5.0 W @ 60 K	20 W @ 40 K	4.0 W @ 50 K	50 W @ 43 K	60 W @ 43 K	45 W @ 50 K
2 nd Stage Capacity	50 Hz	0.1 W @ 4.2 K ¹	0.4 W @ 4.2 K	0.5 W @ 4.2 K	1.0 W @ 4.2 K	1.25 W @ 4.2 K	1.5 W @ 4.2 K
	60 Hz	0.1 W @ 4.2 K ¹	0.4 W @ 4.2 K	0.5 W @ 4.2 K	1.0 W @ 4.2 K	1.25 W @ 4.2 K	1.5 W @ 4.2 K
Minimum Temperature ²		<3.0 K	<3.5 K	<3.5 K	<3.5 K	<3.5 K	<3.5 K
Cooldown Time ²	50 Hz	<150	<120	<90	<60	<60	<60
	60 Hz	<150	<120	<90	<60	<60	<60
Weight		7.2 kg (15.9 lbs.) ³	16.0 kg (35.3 lbs.)	14.0 kg (30.9 lbs.)	18.0 kg (39.7 lbs.)	20.0 kg (44.1 lbs.)	18.5 kg (40.8 lbs.)

[Sumitomo catalog at http://www.shicryogenics.com/products/4k-cryocoolers/]

Front view (model) of the assembly

Sumitomo RDK-415D cryocooler

Cavities tested

1.3 GHz Nb SRF cavity

provided by LANL.

Models for the cavities mounted

5.1 GHz Copper Cavity

5.7 GHz Copper Cavity

A 3-D model of the 1.3-GHz Nb cavity attached to the cryocooler

1.3 GHz Nb cavity

Photos of 5.1-GHz cavity mounted on the cryocooler

Thermal shield covered with multi-layer-insulation sheets (superinsulation)

5.1-GHz copper cavity cooldown temperature and pressure evolution

Time after turning on cryocooler (h:mm)

5.1-GHz copper cavity resonant frequency vs. temperature

Surface resistivity of a 5.1-GHz copper cavity calculated from Q measurements. The result was close to theoretical curve.

Theoretical curves assume RRR=400 copper (very high conductivity). The 5.1 GHz cavity (made by SLAC) is most likely OFE copper, which typically has RRR = 100-200 (higher resistance than used for the theoretical calculations).

At cryogenic temperature, the R_s scales as $\propto f^{2/3}$, i.e., $(5.105/5.712)^{2/3} = 0.928$. So, the theoretical resistance is about 7 percent lower at 5.1 GHz.

1.3-GHz single-cell Nb cavity cooldown and heating tests

Cernox temperature sensors' locations and designation

Cernox sensors' locations: "Close" and "Far" are relative to the cryocooler location

Cernox sensors' locations: "Close" and "Far" are relative to the cryocooler location

Heating test with a resistor

Fiber glass threaded rod to support the heater. The heater is attached to the tip of this rod inside the cavity.

Heating test with a resistor

Heater installation

The heater is made of the following components:

- A 50 Ω resistor (48 Ω measured)
- A copper capsule to hold the resistor, minimize the point of contact on the surface of the cavity, provide a support
- A fiberglass threaded rod to hold the capsule in position and pressed against the cavity inner surface

Cooldown of the Nb cavity. It took a little over 6 hours to reach the ~lowest temperature.

Pressure evolution during the cooling of the Nb cavity

An ANSYS simulation result of the temperature profile with a 2 W heating spot on the 1.3-GHz Nb cavity inner surface with the cryocooler 2nd stage kept at 4 K.

2 W

The temperature profile on the cavity with a 2 W heating spot on the cavity inner surface

Experiment: Temperatures at the sensors vs. heater power. No detailed comparison with simulation was done.

Summary and future plans

- We acquired some experience in developing a system to cool down cavities with a cryocooler and successfully cooled down NCRF and SRF cavities to the temperatures low enough to be useful for future tests.
- We plan to develop cryocooler-based cooling systems for
 - C-band (5.7-GHz) NC RF cavities for low-power and highpower tests.
 - Low-power tests for MgB₂ coated 1.3-GHz single-cell cavities.
 High-power tests will be performed at KEK through a US-Japan cooperation project.

