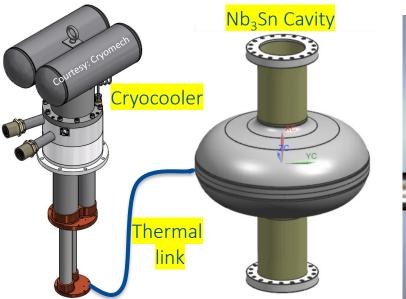


Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

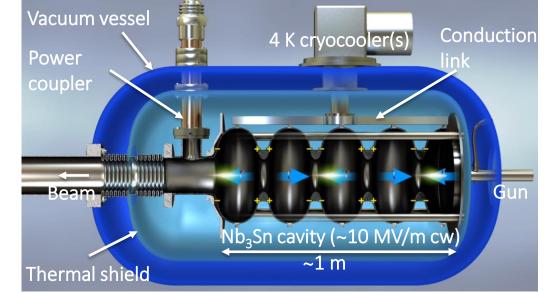
Progress on a conduction cooled SRF cryomodule at Fermilab

Ram C. Dhuley


(with contributions from Fermilab AD/ME, APS-TD/SRF, and IARC@Fermilab)

October 13, 2022 Work group 3, TTC 2022 Aomori, Japan

FERMILAB-SLIDES-22-193-DI-TD


Cryocooler conduction cooled SRF

- Helium liquefier → Closed cycle cryocooler ->> reliable cryosystem
- Liquid helium bath → Conduction links ->> simpler cryomodule
- <u>Simpler and more reliable cryosystem</u> makes the SRF technology attractive for building <u>compact accelerators for industrial applications</u>

Concept of cryocooler conduction cooled SRF

Rendering of a compact, conduction cooled SRF accelerator for industrial applications

10/6/2022

🛠 Fermilab

2 Ram C. Dhuley | Conduction cooled SRF cryomodule development at Fermilab

Conduction cooled SRF R&D at Fermilab

- Development and performance testing of cryocooler conductioncooled SRF cavities (2018-22)
 - Demonstrated 10 MV/m cw on a single-cell 650 MHz Nb₃Sn cavity conduction cooled by a Cryomech PT420 cryocooler
 - <u>https://doi.org/10.1088/1757-899X/1240/1/012147</u> and <u>https://doi.org/10.1088/1361-6668/ab82f0</u>
- Design studies of high average power e-beam accelerators (2019-22)
 - Designed a 10 MeV, 1000 kW avg. power e-beam conduction cooled SRF accelerator for wastewater treatment
 - https://doi.org/10.1103/PhysRevAccelBeams.25.041601
- e-beam SRF accelerator development (2021–ongoing)
 - Build and operate a 1.6 MeV, 20 kW e-beam machine <this talk
 - Build a 8 MeV, 20 kW e-beam machine for mobile applications < J. Thangaraj talk; WG3 today 2:17 PM

🛟 Fermilab

3

e-beam SRF accelerator development

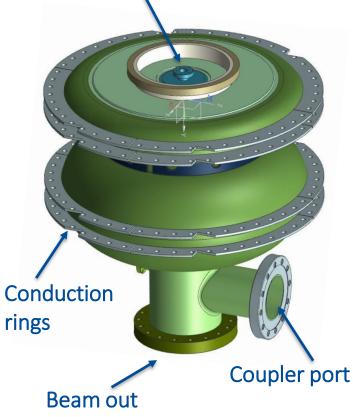
- Motivation Development of an alternative to Co-60 radiation sources for the medical devices sterilization industry
- e-beam based X-ray sources is an attractive alternative
 - ~15 kW X-rays provide comparable radiation dose to ~1 MCi of Co-60
 - 150-200 kW e-beam is needed to produce 15-20 kW X-rays!
- The high average-power e-beam requirement can be realized via <u>cw</u> <u>operation</u> of an SRF accelerator
- Fermilab's staged approach
 - Build components, integrate, and operate a 1.6 MeV, 20 kW e-beam machine
 - Integrated thermionic electron gun
 - Cryocooler conduction-cooled Nb₃Sn SRF cavity
 - Low heat leak power coupler
 - Low heat leak and magnetically shielded cryostat
 - Solid state RF power source
 - Beam delivery
 - Use experience and lessons learnt to build 8 MeV, 200 kW e-beam machine to produce X-rays for the medical devices sterilization industry

🛟 Fermilab

10/6/2022

1.6 MeV, 20 kW conduction-cooled SRF accelerator cryostat

~1 m diameter


10/6/2022

🛠 Fermilab

Component details

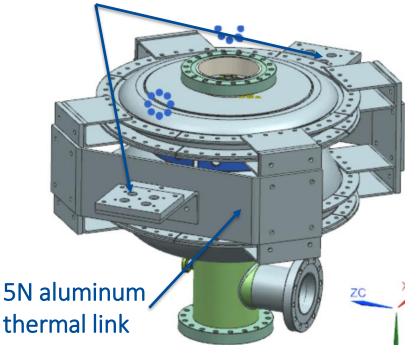
SRF cavity and heat load estimation

e-gun port

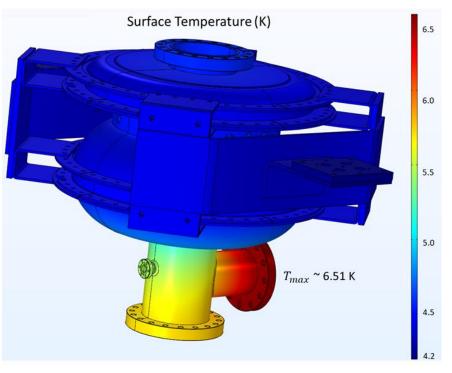
Heat load at ~5 Kelvin	Value [W]
RF dissipation in cavity (with Q ₀ = 1e10)	1.46
Gun static heat leak	0.08
Cathode radiation to cavity (temp = 1373 K)	0.22
Conduction through cavity supports	0.1
Conduction through outlet beam pipe	0.1
Thermal radiation to cavity from thermal shield	0.1
Thermal radiation to cavity through beam pipe window	0.24
Beam loss (1e-6 of 20 kW = 0.02 W)	0.02
Coupler static + dynamic at 20 kW cw	1.0
Total	3.5

Manageable with 2x Cryomech PT420 coolers

🛛 🛟 Fermilab

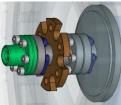

6 Ram C. Dhuley | Conduction cooled SRF cryomodule development at Fermilab

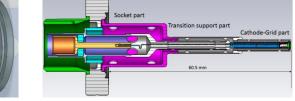
10/6/2022


Component details

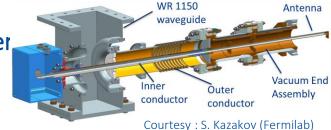
Verification of conduction cooling (RF + thermal simulation)

2 x cryocooler mounting pads


FEA verification of thermal link performance



Component details


Integrated thermionic cathode

Courtesy : I. Gonin, V. Yakovlev, T. Nicol (Fermilab)

Low loss coupler (<1 W to 5 K)

Cryocoolers and compressors

Courtesy : M.I. Geelhoed (Fermilab)

650 MHz, 20 kW solid state RF amplifiers

Courtesy : C. Edwards (Fermilab)

Ram C. Dhuley | Conduction cooled SRF cryomodule development at Fermilab

Current status

- 1.5-cell SRF cavity \rightarrow delivery expected in November 2022
- Power coupler \rightarrow delivery expected in February 2023
- Thermionic gun \rightarrow delivery expected in March 2023
- Cryostat
 - Cavity conduction links \rightarrow fabricated and ready for assembly
 - Thermal shield \rightarrow in procurement
 - Magnetic shield \rightarrow in final design
 - Vacuum vessel \rightarrow in final design
- LLRF and SSAs \rightarrow at hand, to be commissioned in early 2023
- Test cave and water/electrical utilities \rightarrow ready

Acknowledgement

This presentation has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

- Funding for conduction cooled SRF demonstration
- Fermilab LDRD (J.C.T. Thangaraj)
- DOE HEP Accelerator Stewardship (R.C. Dhuley)
- Funding for Nb₃Sn coating infrastructure
- Fermilab LDRD (S. Posen)
- DOE Early Career Award (S. Posen)
- Funding for building the 1.6 MeV, 20 kW e-beam SRF accelerator
- US National Nuclear Security Administration (T. Kroc, R.C. Dhuley)

Thank you