Nb₃Sn coating R&D at KEK

Hayato Ito, KEK

On behalf of KEK Nb₃Sn group

TESLA Technology Collaboration Meeting 2022 2022/10/12

Contents

- Nb₃Sn Coating Furnace at KEK
- 1st cavity coating
- Modifications
- 2nd cavity coating
- For next cavity coating
- Summary

Hayato Ito, 2022/10/12

 Two independent vacuum systems

- Heaters
 - Furnace: Max 1200°C
 - Sn crucible: Max 1500°C
- Nb tube is evacuated during coating

1st Cavity Coating _ #24

- The top flange open
- Witness samples inside

Hayato Ito, 2022/10/12

Small solid angle significantly limits the Sn evaporation

0.17 g for a coating time of 1.5 h at Run #1

• To gain a solid angle, we put a lot of Sn into the Sn crucible

• Up to 2.33 g of Sn evaporated

• The amount of evaporation was uncontrollable

-> we made a new Sn crucible for 2nd cavity coating

1st Cavity Coating _ #24

• Annealing : 0 h

5.00u

After coating

Witness sample _ #24

10 µm 19:17 H D7.9 x7.0k Nb3Sn coating R&D in KEK

- Sample inspection
 - Grain size: 1~3 um
 - Thickness: 1.7±0.4 um
 - Atomic Sn content: 23.1±0.4 %

VT Result

- Max E_{acc}: 10.8 MV/m Thermal quench Max Q₀: 3.7E9 at 1 MV/m <- 5 times higher than the Nb cavity
- To reach more higher performance:
 - 1. making a new Sn crucible
 - 2. Installation of clean booths
 - 3. using a cap for the top flange

Modification 1

We made a new Sn crucible to get a enough Sn evaporation

- Effective aperture is twice bigger than Ver.1 (ϕ 12 mm to ϕ 26 mm)
- All Sn in the Sn crucible evaporates now, allowing control of the amount of Sn evaporation

Hayato Ito, 2022/10/12

Modification 2

Hayato Ito, 2022/10/12

Modification 3

1st cavity coating

Hayato Ito, 2022/10/12

2nd cavity coating

- We close the top flange with Nb foil
- Aims:
 - Increasing Sn vapor pressure
 - Prevent dust from entering the cavity

2nd Cavity Coating _ #43

- Coating process
 - Nucleation: 600°C 1 h
 - Coating : 1100°C 3 h (Furnace)

1300°C 3 h (Sn crucible)

• Annealing : 0 h

Temporary SnCl₂ crucible

Hayato Ito, 2022/10/12

2nd Cavity Coating _ #43

- Coating process
 - Nucleation: 600°C 1 h
 - Coating : 1100°C 3 h (Furnace)

1300°C 3 h (Sn crucible)

• Annealing : 0 h

Temporary SnCl₂ crucible

Hayato Ito, 2022/10/12

Sn crucible

The top flange was closed with Nb foil

After coating

2nd Cavity Coating _ #43

- Coating process
 - Nucleation: 600°C 1 h
 - Coating : 1100°C 3 h (Furnace)

1300°C 3 h (Sn crucible)

• Annealing : 0 h

Temporary SnCl₂ crucible

Hayato Ito, 2022/10/12

Sn crucible

The top flange was closed with Nb foil

After coating

Many Sn droplets formed at the top of the cell.

VT Result

- 1.6 K 1.7 K 1.8 K 1.9 K 2.0 K
- Max E_{acc}: 1.8 MV/m at 2 K
- Power limit
- Max Q₀: ~ 5E8 at 2 K
- 1. Top of the cell was heated up
- 2. Q₀ was decreased
- 3. As E_{acc} was decreasing, Q₀ recovered to Initial value
- Measurement points take an irreversible path
- Transition of Sn droplets on the inner surface of the cavity might occurred
- Tc of Sn: 3.72 K
- We have to avoid formation of Sn droplets

For Next Cavity Coating

Hayato Ito, 2022/10/12

For Next Cavity Coating Simple shader would work well.

Hayato Ito, 2022/10/12

For Next Cavity Coating • SnCl₂ contamination inside the tube

Hayato Ito, 2022/10/12

- Most of the components were derived from SnCl₂, but components derived from SUS were also detected
- SnCl₂ adhering to the inside of the tube corroded the SUS
- It has to be removed because it causes contamination

Summary

- Nb₃Sn cavity study using a vapor diffusion method has been conducted at KEK
- Nb₃Sn coating for the single cell cavity has been performed twice with various improvement
 - Creating a clean environment around the furnace
 - Crucible design to ensure sufficient evaporation of Sn vapor
 - Nb₃Sn coating with high Sn vapor pressure
- -> Sn droplets formed inside the cavity in 2nd coating test
- For next cavity coating
 - We will install the shading to suppress the Sn droplets formation
 <- Is a simple shading sufficient? Or do we need something like a diffuser?
 - We have to remove the SnCl₂ contamination inside the tube
 <- Is this kind of experience only KEK? How can we remove it?

