∂TRIUMF

'Bad' Operating Experience in ISAC-II

Zhongyuan Yao WG-4, TTC meeting, Aomori-city Oct. 11 – 14, 2022

Φ

Isotope Separator & ACcelerator (ISAC)

40MV accel. 2≤A/q≤6 RIB to 6.5–16MeV/u

elerat

ŭ

ac

ISAC-II Performance

Oct. 13, 2022

3

ð

accelerati cove

Discovery, accelerated

Expectation & Reality

Oct. 13, 2022

5

accelerate

∂TRIUMF

Vacuum Accident

- Beamline vented with Air by human error from experimental hall
- 6 isolation valves and 1 fast valve (not armed, 5m from CM) in open state
- Conventron gauge (0.6m from CM) saw 200Torr pressure (data every 5 min)
- Missed '2 fingers' of rubber glove from vent spot

% TRIUMF

Observation after Accident

- Looking for missed '2 fingers' of glove or damages on beamline
 - Bits of glove in diagnostic box (~5m from venting spot)
 - 3 of 4 stripping foils damaged

SCC3 Cavities

Discovery, acceleratec

∂ TRIUMF

Cavity Performance

Oct. 13, 2022

%TRIUMF

Special One – SCC3#8

10

a S S

Trapped flux from operating solenoid?

- Solenoid operating @ 5.3 T
- Magnetic field @ Cav#8 ?
- Hypothesis
 - Bad vacuum significant increased heat load to cavity
 - Cavity quenched (including helium jacket/magnetic shield)
 - Trap flux after cooldown
 - Look for evidence of cavity quench in archive
 - 3 temperature sensors each cavity
 - Inner conductor in LHe
 - Cavity top and bottom flanges in vacuum

% TRIUMF

Cavity Quenched?

Discovery, accelerated

Cavity Quenched?

accelerat

Magnetic Pollution

●#1 **●**#2 **●**#3 **●**#4

Discovery, accelerated

Magnetic Pollution

◆#1 ◆#2 ◆#3 ◆#4

Discovery, accelerated

Require Higher Magnetic Field

- Compare to SCB5#1/4
 - Full cavity transition in magnetic field
 - $1 \times 10^8 @ 0.5T \rightarrow 1 \times 10^7 @ 5T$
- But SCC3#8
 - 615mm further away from solenoid
 - Should not have higher local magnetic field
 - Should not have lower Q₀
 - But Q₀ ~3x10⁶

What Happened on SCC3#8?

- Bits of glove blown into SRF cavity?
 - Dielectric RF loss
 - Estimation
 - Material, nitrile butadiene rubber (NBR)
 - Thickness 0.1mm (from glove spec.)
 - Dielectric constant ~5 @ 100MHz
 - Loss tangent ~0.2 @ 100MHz
 - Very rough parameters at unknown temperature
 - Drop material to a simplified simulation model

% TRIUMF

Dielectric Loss?

Simulation with CST

- Stick to IC (high e-field region)
 - 10mm diameter bit, Q₀ ~ 2x10⁶
- Stick to OC (high e-field region)
 - 40mm diameter bit, $Q_0 \sim 2x10^6$
- Drop on the bottom plate
 - Require unrealistic big piece

Yes or No?

- Maybe realistic size if on IC
- To find bits of glove in cavity or CM
- How 300K thermal cycle restored Q₀?

Operating with Degraded Cavities

Run 3 months with reduced gradient

- Total voltage 39MV → 29MV
- 'Benefit' broader RF bandwidth
- Last 3 cavities have enhanced multipacting barriers
 - MP conditioning applied
 - I cavity still has low level barrier after conditioning, but can jump over
- Planned high power pulse conditioning for SCC cavities when beam schedule allows

% TRIUMF

Pulse Conditioning

Longer Term Pollution

- Not found immediate degradations on SCB cavities
- But observed degradations after 3 months operation
 - Enhanced FE SCB2#2/3/4, SCB4#3, SCB5#3
 - Q degradation SCB3#1/4, SCB4#1, SCB5#1
 - 25%~50% Q drop
 - May accompany with enhanced FE
- Question #1 Are #1 & #3 magic numbers?
- Question #2 Are SCB CMs polluted as well?
- No Answer Yet

Recovery Plan

- Remove contaminated CMs from tunnel to cleanroom
- HPR all SCC cavities
- SCB cavities not clear
 - To assess performance after 300K thermal cycle
- 1 CM per year in winter shutdown
 At least 3 years to recover

Lesson Learned

Human error

- Direct cause, but not root cause
- Protection
 - Fast valve was open but not armed
 - Never had chance to 'test' since installation
 - Planned to do annual validation/calibration

Procedure

 Certain number of isolation valves shall be closed without beam delivery

Final Remarks

 Hope this is and will be the only available data of linac pollution for SRF community

% TRIUMF

Thank you Merci

Question?

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerate

How could it be in a separated vacuum CM?