

Large Grain Cavity R&D

TTC 2022 2022/10/11

Mathieu Omet

3-cell LG Cavity R&D

Courtesy H. Araki, KEK

Motivation

ILC cost reduction R&D

• Properties

- TESLA-shape 3-cell cavity
- High-RRR
- Large-Grain Nb
- Manufactured at KEK CFF



	RRR	Ta (ppm)	Cavity
ILC TDR	≥ 300	≤ 500	-
High RRR, Low Ta	500	20	R16, R16b
High RRR, High Ta	363	1390	R17, R17b

3

3-cell LG Cavity VT Test Results

- All cavities were treated according to the ILC TDR
 - Pre-EP (5 μm) & EP-1 (100 μm)
 - Annealing (800°C 3h)
 - Local grinding
 - EP-2 (20 μm)
 - Baking (120°C 48h)
 - R17 and R17b received additional local grinding and EP-2
- All achieved ILC TDR specifications (*)

Large Grain Cavity R&D

Large Degradation Observed in 3-cell LG Cavities iCASA

R16 VT1

R16b VT1

R16b VT2

R16b VT3

R17 VT3

R17b VT3

Before

41.4

39.7

41.7

40.6

43.1

41.9

After

37.2

39.5

35.4

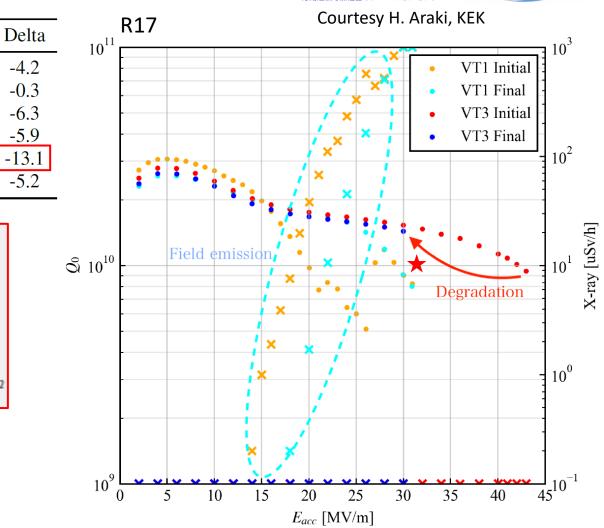
34.7

30.0

36.6

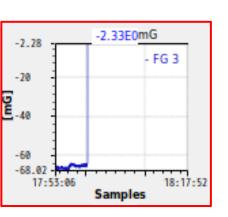
-4.2

-0.3


-6.3

-5.9

-5.2


- Performance degradation due to quenching was observed in all 4 cavities
- We believe the environmental magnetic field is locally trapped at the quenching site
- R17 VT3 showed the largest degradation
 - 43.1 MV/m to 30.0 MV/m
 - A change of over **60 mG** on the outer surface
- We could demonstrate that a thermal cycle to above the transition temperature releases the trapped flux, reverting the degradation

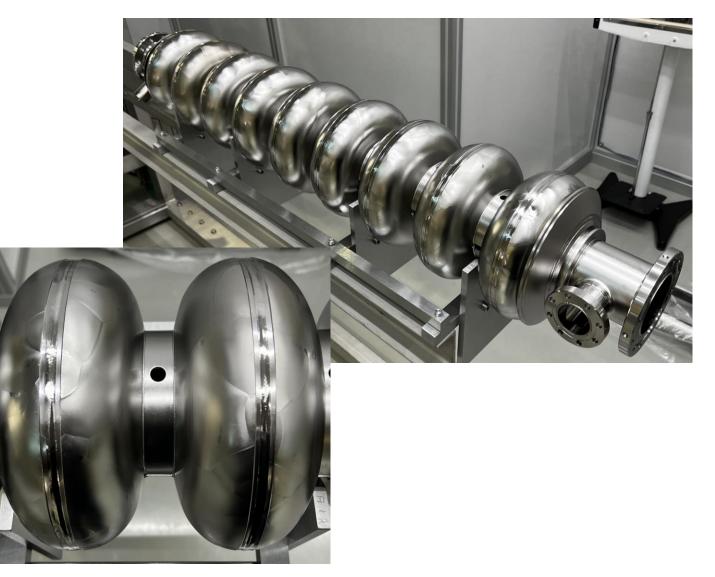
For more on 3-cell LG cavity R&D see also the contribution at 加速器学会 2022: H. Araki et al., "Performance Measurement of Superconducting Cavities Using New Niobium Material", WEP031

Center for

Applied Superconducting

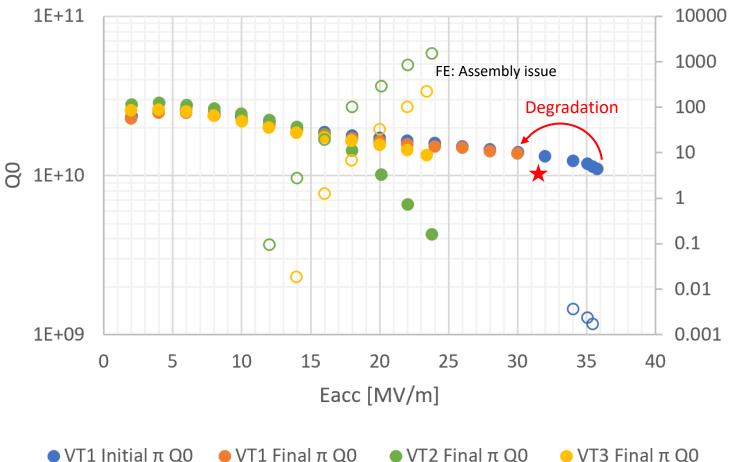
9-cell LG Cavity: KEK7

- Motivation
 - ILC cost reduction R&D
 - Horizontal test


• Properties

- TESLA-shape 9-cell cavity
- High RRR
- High Ta
- Large-Grain Nb
- Manufactured at KEK CFF

• Treatment


- Local grinding
- Pre-EP (5 μm) & EP-1 (100 μm)
- Annealing (900 °C 3h)
- EP-2 (30 μm)
- Baking (120°C 48h)

Comparison Q0 vs Eacc of KEK7 VT1, VT2, and VT3

- VT1 initial π mode fulfilled ILC TDR specifications (★)
- Degradation during 6π/9-mode measurement in VT1 by 5.8 MV/m
- FT in VT2 and VT3 is an assembly issue

Ο VT1 Initial π X-ray Ο VT1 Final π X-ray Ο VT2 Final π X-ray Ο VT3 Final π X-ray

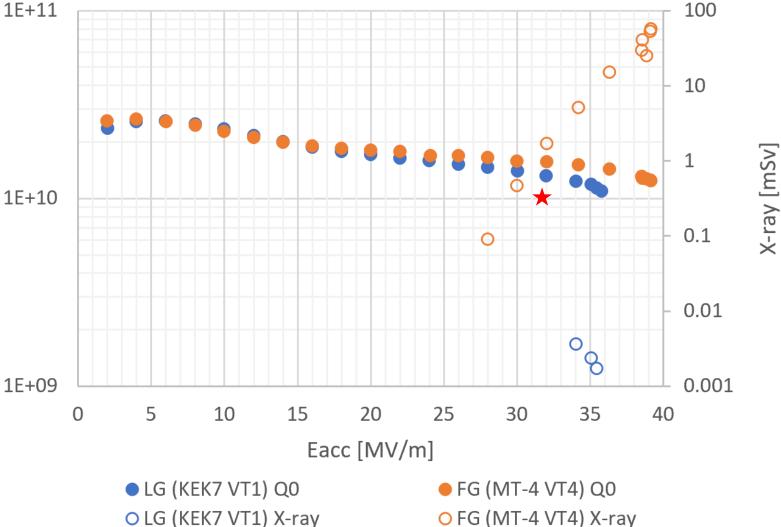
X-ray [mSv]

Mathieu Omet, 2022/10/11

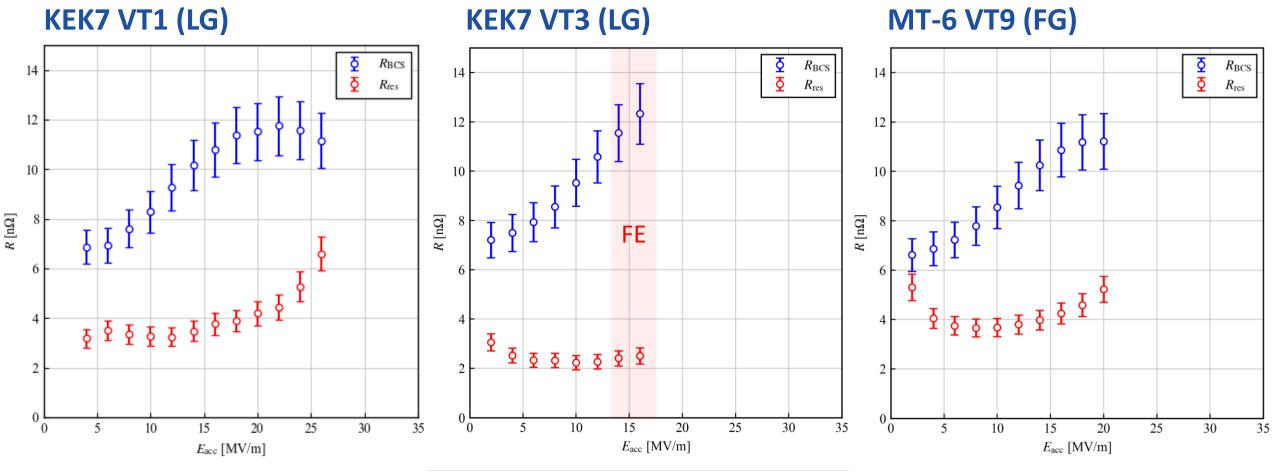
Possible explanation for FE during VT3

- Cavity was closed at within the HPR stand
- It was moved to the C1000CR and dry and clean blown
- It was moved to the C10CR
- Even after removing all four bolts, the bottom beam-pipe blind flange stayed put
- In order to remove the bottom beam-pipe blind flange, a little force was required

Large Grain Cavity R&D


- A sucking sound occurred
- There must have been negative pressure inside the cavity
- First time observed for 9-cell cavity

Comparison of Q0 vs Eacc for LG and FG


- Both cavities received standard treatment
 - Baking (120°C 48h)
- Both fulfilled ILC TDR ⊗ 1E+10 specifications (★)
- Remark: Magnetic field is not controllable for 9-cell cavities

Comparison of RBCS and Rres for LG and FG

(all corrected for degradation)

Preparation for Horizontal Test of KEK7

- We believe FE can be overcome by additional HPR and performance as in initial π -mode measurement of VT1 can be achieved
- Proceed with preparation for horizontal test
 - KEK7 was jacketed
 - Leak check passed
 - Pressure test passed
 - Production of magnetic shield
- Plan for 1st HT in January 2023

Courtesy T. Dohmae, KEK

Summary / Discussion Points

- 3-cell LG cavity R&D
 - Four cavities produced at KEK: High RRR, low & high Ta, TESLA shape
 - All reached ILC TDR specifications
 - Degradation due to trapped flux observed, curable with thermal cycle
- 9-cell LG cavity R&D
 - One cavity produced at KEK: High RRR, high Ta, TESLA shape
 - Reached ILC TDR specifications in initial π -mode measurement of VT1, then degradation due to trapped flux
 - Q0 and Eacc performance comparable with FG (need more tests)
 - Very similar R_{BCS} and slightly lower R_{res} than FG
 - Proceeding with preparations for HT

• Why do these large degradations occur? / Why is so much flux trapped?