∂TRIUMF

Commissioning of ISAC-II Style Separated Vacuum QWR Cryomodule

Zhongyuan Yao

WG-2, TTC meeting, Aomori-city Oct. 11 – 14, 2022

% TRIUMF

RIB Facility @ VECC, Kolkata

- 2 QWR cryomodules boost RIB energy from 1MeV/u to 2MeV/u with A/q≤7
- TRIUMF SRF team developed, produced and commissioned the prototype CM

% TRIUMF

ISAC-II Style QWR Cryomodule

- Top loading CM
- Operate @ 4K
- 4 QWRs V_{acc} 1MV each
 113.61MHz, optimized β 5.5%
 120µm BCP, HPR, 120°C bake
- 7T superconducting solenoid
- Variable inductive RF coupler
- Lever tuner with warm servo motor
- Steering effect corrected with offset
- Warm µ-metal shield
- 80K thermal shield

Oct. 11, 2022

Separated Vacuum Design

Beam port & warm/cold transition

Frequency tuner & bottom assembly Z. Yao, WG-2, TTC meeting, Aomori-city, Japan

elera 0 Ŭ Ŭ

Milestones

eleration COVE

ŭ ac

∂ TRIUMF

Scope of Commissioning

- Vacuum, Diagnostics, Alignment
- Cryogenic
 - LN2 and LHe cooldown
 - Static and dynamic heat loads

RF

- Cavity frequency and tuning range
- Cavity performance
- Performance degradation/recovery
- Operating regime
- Solenoid
- Beam commissioning not included

ISAC-II Test Bunker

Cooldown

- 80K shield cooling 24 hours prior to LHe
- Cavity >250K prior to LHe
- LHe cooldown
 - Cavity in 200-50K range 20-70 minutes
 - Cavity cooled to 4K ~3.5 hours
 - Cold mass in liquid ~7 hours

Initial Performance

Discovery, accelerated

%TRIUMF

'Big' Leak @ Gate Valve

- Pump from upstream gate valve (Cav#1)
- Found leak at the downstream gate valve (Cav#4)
 - Misaligned aluminum 'Diamond' gasket
 - w/ support ring for metal KF seal
 - Required pump and vent a few times to find the leak spot
 - Fixed by replacing gasket

∂ TRIUMF

High Power Pulse Conditioning

- Helium conditioning planned, but could not proceed
 - CM needs warmup due to power outage at Xmas
- HPR Cav#1 and Cav#2
 - Vent cavity string in cleanroom
 - Remove Cav#1 and Cav#2 for HPR
 - Reassemble after HPR

∂ TRIUMF

HPR Cav#1 & Cav#2

*****TRIUMF

Clean Venting

- Vent cavity string with TRIUMF procedure
 - Controlled by pressure rate on clean side
 - Specified <1Torr/s</p>
 - Manual adjusted needle valve
- Venting procedure and controller need update • Backfill with filtered (0.01 μ m) bottled N₂ gas (NI4.8)
 - Vent from vacuum to atmosphere pressure took ~1hour
- Compare to ISAC-II CM
 - Vent in 2~3hours online for maintenance
 - Volume comparison
- Benefit of single vacuum CM SCB CM 3400L vs VECC cavity string 70L
 - Not observed pollution

Helium Conditioning

- After helium conditioning, helium gas was pumped out w/o cavity string thermal cycle
- RF measurements at RF space <1x10⁻⁷Torr

Helium Conditioning Cav#3 & Cav#4

Discovery, accelerated

∂ TRIUMF

Compare to Cryostat Tests

Oct. 11, 2022

16

ac

%TRIUMF

Multipacting (1)

Multipacting (2)

18

ð

accelerat

Cryogenics

LN2 consumption

5.1 L/hour measured by gas flow meter

LHe heat loads

- Falling level method
- Static load 9.3W
 - ISAC-II SCB CM ~13W
- Dynamics loads measured w/ 1 cavity
- 1.3W at 6.6MV/m and critical coupling (1.5W by RF)
- 1.6W in operating regime (200W P_{FWD} in full reflection)
 - <1W additional LHe load from RF coupler loop</p>

Others Results

- Cavity frequency on target at 4K with ~15kHz tuning range
- Variable RF coupler Q_{ext} range $2x10^4 \sim >2x10^9$
- df/dp ~ -1Hz/mbar, LFD ~ -2Hz/(MV/m)²
- Phase locked in operating regime for >30min w/o active frequency tuning
- Solenoid ramp up to 7T
 - No affect on cavity performance in normal operation
 - Degaussing is required to avoid cavity Q degradation in case of accidental cavity thermal cycle above T_c
 - Degraded cavity still meets operating specification

%TRIUMF

After Commissioning

Discovery, accelerated

% TRIUMF

Thank you Merci

Question?

www.triumf.ca

Follow us @TRIUMFLab

(f) (i) (ii)

Discovery, accelerate