SUPERCONDUCTING 56 MHz CRYOMODULE FOR SPHENIX

Zachary Conway

On behalf of the BNL Collider Accelerator Department & RF Group 11 October 2022

BROOKHAVEN SCIENCE ASSOCIATES

Overview

- Purpose of the 56 MHz System
- 56 MHz System
- sPHENIX Changes
- Status Update
- Future Schedule

sPHENIX Impact

QWR56 - 10/11/2022

BROOKHAVEN NATIONAL LABORATORY

56 MHz Operation: Power Loss on FMD Loop and V_{real}

S. Polizzo, Presentation @ 2016 MAC Review

T. Xin, S. Polizzo & M. Blaskiewicz

QWR56 - 10/11/2022

BROOKHAVEN NATIONAL LABORATORY

56 MHz Cryomodule

What do we need?

- Cavity operation = 2 MV
- Support a 50% greater effective beam current.
 - Longitudinal instability growth rate due to a single HOM ~ *Q_L*I_b=Constant*
 - Fundamental Mode Damper (FMD) ~ 126 kW
 - Also an HOM damper.
 - Fundamental Power Couplers (FPCs) ~ 2 X 3 kW
 - Also HOM dampers.
 - Ponderomotive Instabilities.
- Improved SRF cleaning and cryomodule preparation.
- Previous operation described in: Q. Wu et al, "Operation of the 56 MHz superconducting rf cavity," PR-AB 22, 102001 (2019)

Cavity Operation > 2 MV?

Cavity Vertical Test - II

Cryomodule test will have variable coupler and can check this measurement.

QWR56 - 10/11/2022

NATIONAL LABORATORY

- Whatever cooling we choose the copper will start to evaporate if the FMD stays in a position close to this, in spite of the water cooling.
- This coupler will be moved through this region in ~30 seconds while heating at ~10°C/s (heat capacity + thermal conduction)

QWR56 - 10/11/2022

NATIONAL LABORATORY

Improved LL & HL RF Dynamics

- Cavity has active tuning.
- Active tuning is no where near as strong as the beam phase jitter!
- Previous run
 - ~ 10 Hz_{p-p} noise.
 - $P_{for} = 3 \text{ kW}$
 - Circulator not stable
 - I/Q Feedback loop to compensate both amplitude and phase errors.
 - Ponderomotive instabilities.
 - Saturated the amplifier

11

Improved LL & HL RF Dynamics

- 2 new FPCs instead of 1 and a new 6 kW amplifier.
 - Higher beam current and improved ponderomotive control.
 - Couplers capable of 3 kW each, will start with single coupler operation and upgrade system with a hybrid splitter and phase shifter to feed both in parallel if needed.
- Ordered new 56 MHz 25 kW circulator and expect delivery in January 2023.
- New AC coupled feedback loop on amplitude only, RF system will no longer try to correct phase errors.
 - Drive feedback loops to be implemented around both the amplifier and circulator. Circulator to also have dedicated chiller for temperature stability.
 - Combined improvement should reduce RF drive by a factor of 2.

Fundamental Power Couplers

K. Mernick, S. Polizzo

Improved SRF Processing - HPR

New BNL HPR Tool (Sized for Largest EIC Cavities, too bad the clean room is not!)

HPR Wand Shuttle Clamp

Improved SRF Processing - II

120°C Bake

- All beam line components HPRed during build-up.
- Assemblies then HPRed after installation on assembly tooling.
- Cavity HPR once

15

Closing Comments

- Upgrading the existing RHIC 56 MHz SRF system for sPHENIX.
- Multiple activities to support this
 - higher power fundamental mode damper,
 - higher power and redundant fundamental power couplers,
 - improved SRF processing and assembly,
 - improved subsystem control
 - (not discussed: coupler and FMD motion positioning and noise during operation improved, improved cryogenic cooling, secured microphonic sources inside of cryomodule...)
- Avoid melting copper couplers.
- Need to test and, if successful, install in RHIC!

Acknowledgments

RF Group: J. Butler, N. Laloudakis, K. Mernick, S. Polizzo, F. Severino, K. Smith, M. Sowinski, Q. Wu, B. Xiao, W. Xu & A. Zaltsman

SRF Group: R. Anderson, H. Door, J. Genco, R. Kellerman & S. Seberg

Cryo Group: T. Tallerico, N. Nilsson, E. O'Connor, C. Taylor & R. Than

Instrumentation: T. Curcio, L. DeSanto, M. Harvey, R. Michnoff, R. Schoenfeld

Mechanical: D. Holmes & M. Grau

Vacuum Group: K. Decker, L. Smart & D. Weiss

Facilities: D. Chan, J. Guerra, F. Kobasiak, R. Karl

