DE LA RECHERCHE À L'INDUSTRIE

Recent results on single cell 704MHz cavity

E. Cenni [CEA PARIS-SACLAY IRFU/DACM/LISAH]

TTC2022 Aomori

www.cea.fr

On behalf of:

F. Éozénou , M. Baudrier, E. Fayette, G. Jullien, L. Maurice, C. Servouin, CEA

H. Hayano, H. Ito, S. Kato, T. Kubo, H. Monjushiro, T. Saeki, KEK

Y. Ida, K. Nii, T. Yamaguchi Marui Galvanizing Co.Ltd.

Outline

• Motivation (from R&D to ESS)

- 704MHz cavity program at CEA
 - Vertical electropolishing (VEP)
- 704MHz Single cell
 - VEP results
 - Vertical test results
- Outlook
 - Single cell
 - 5-cells (high beta ESS)

Motivation for recent studies:

We have a long R&D history with 704MHz cavity that lead us to ESS prototypes and series, we now want to pursue further topics:

- Improving the performance of 704MHz resonators for future applications
- Study improvements of Vertical electropolishing with respect to standard BCP
- Investigate the effect of different thermal treatments

Timeline:

DE LA RECHERCHE À L'INDUSTR

Ce⊇ 704 MHZ LINAC PROGRAM (SPL→ESS)

EUROPEAN SPALLATION SOURCE

At CEA we were in charge of cavity, coupler design and preparation recipe validation. Procurement of all components but cavities, integration of 32 cryomodules. Power test on 6 CM

Treatment of β =1 SPL Cavity (2014) (EuCard): Vertical Electropolishing (VEP) with fixed cathode

Treatment of ESS proto M-beta (2016): Standard 'BCP' Chemical polishing

DE LA RECHERCHE À L'INDUSTRI

Cea VEP FIRST TRIALS (2014)

IMPROVEMENT OF HYDROGEN EVACUATION AND ACID CIRCULATION IN THE CELLS ARE MANDATORY Typical surface morphologies after >100µm VEP at different locations.

- The weldings at a) equators, and b) irises are smooth.
- Bubbles stripes are observed at the proximity of irises c) and d).
- In the areas between equators and irises e) the surface is rougher.

Cea ess baseline with BCP

Baseline recipe for ESS prototypes cavities

- Bulk BCP ~200µm (15°C)
- Heat treatment @650°C x 10hours
- Final BCP ~20µm (15°C)

 E_{acc} +10-20% w.r.t. Specification Q_0 x3 w.r.t. Specification

ESS HIGH BETA CAVITIES (VT@2K)

2 Cavity design

Single cell cavity, geometry from **ESS** high beta (β =0.86) end cell

Certa Cathode Development (\rightarrow NINJA CATHODE)

20

FJPPL France-Japan Particle Physics Laboratory collaboration

Removal	μm
Average	76.3
Max	129
Min	44
Average BT	49.4
Average cell	86.4
Max/min cell	1.76

DE LA RECHERCHE À L'INDUSTRIE

DE LA RECHERCHE À L'INDUSTRI

Cea cold magnetic shielding

Warm magnetic shield Warm magnetic shield+solenoids 100 Earth B field (France)) cryostat helium 10 Existing New inner outer mag. mag. shield shield |B| [µT] Compensing coil 1 Superconducting cavity Warm CV shield + cold insert shield 0.1 0.01 500 1000 1500 2000 2500 3000 0

Z [mm]

To improve shielding, a cold 2mm CryoPhi shield is added around the cavity on the insert -> allows to have way less then 1 μ T remnant field (<u>typically 0.1 μ T = 1 mG</u>)

DE LA RECHERCHE À L'INDUSTR

Surface resistance with respect to temperature @1MV/m

Cavity preparation baseline:

- 200µm bulk VEP*
- HT 650°C x 10h+10µm flash VEP*
- Baking 120°C x 48h
- HF rinse

*all VEP performed below 15°C

	Bulk EP	HT+EP	Baking	HF rinse
R₀[nΩ]	2.38	1.2	1.36	1.79
Δ [K]	18.94	18.84	20.02	18.96
Eg [meV]	1.63	1.62	1.73	1.63

Fitted with

$$R_S = \frac{A}{T} \times e^{-\frac{\Delta}{T}} + R_0$$

DE LA RECHERCHE À L'INDUSTRIE

Cea vertical tests "History"

Cea latest tests @1.4K CW

CW@1.4K					
VT#	Max E _{acc} [MV/m]	Max Q ₀ [/10 ¹⁰]	Q ₀ Max field [/10 ¹⁰]		
Baking	44.9	12.3	4.7		
HF rinse	41.4	15.7	1.34		

DE LA RECHERCHE À L'INDUSTRI

Cea comparison with baseline BCP

- "...With a pinch of salt"
- Single cell has BT extensions
- Magnetic shielding is better for single cell
- Cooling and cooling speed is better for single cell, 5 cells has grater mass and it is tanked

CO2 SURFACE RESISTANCE DECOMPOSITION

DE LA RECHERCHE À L'INDUSTRIE

On Single cell follow up studies:

- EP 10-15µm "reset" (VT5)
- Two step baking (VT6)
- Effect of cooling speed (VT6b)

ESS high beta prototype (HBP03) cavity preparation up to now:

- Bulk BCP (200µm)
- Heat treatment
- Flash BCP
- HPR
- Ready for VT and BCP_baseline

VEP for multicell (cathode is ready)

THANK YOU FOR YOUR ATTENTION

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Saclay | 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019