Latest results of treating and testing the RAON HWR SRF cavities

TTC2022 Aomori, TESLA Technology Collaboration (WG1 October 12, 2022, 11:45 AM)

Heetae Kim

Heavy-Ion Accelerator Research Institute, Institute for Basic Science, Daejeon 34000, Republic of Korea

Contents

- Design of QWR and HWR cryomodules
- Processes for manufacturing QWR and HWR
- Vertical test
- QWR and HWR CM installed in tunnel
- 😊 Summary
- Questions
- Acknowledgement

CRAC

Design of quarter-wave resonator cryomodule

-RAON

Design of half-wave resonator cryomodules

CRAON

Fabrication process

Processes for manufacturing QWR and HWR are follows:

- 1. Raw material
- 2. Single and sub parts
- 3. Stack-up test
- 4. Electron beam welding
- 5. Fabricated bare cavity
- 6. Ultrasonic cleaning
- 7. Buffered chemical polishing
- 8. Inspection for inside of the cavity
- 9. High temperature baking
- 10. High pressure water rinsing
- 11. Vertical test
- 12. Frequency change
- 13. Cryomodules

Inspection of Nb raw material

Picture of Nb raw material

RRR 300 grade niobium is used for superconducting cavities. The thickness of Nb sheet is 3 mm. Dimensions, mechanical properties, and electrical properties are checked.

6

Single and sub parts

Picture of cavity components

Single and sub parts are made by EDM wire cutting, deep drawing, press forming, and brazing.

Stack-up test

Stack-up test showing clamp up assembly

Resonance frequency is checked in stack-up test.

Electron beam welding

Electron beam welding

Vacuum pressure should be below 10⁻⁶ mbar for electron beam welding. Welding shrinkage needs to be considered.

Fabricated bare cavity

Fabricated bare cavity

Solution Visual inspection is performed for weld beads. Dimension and frequency are checked. Leak test is performed.

0

Ultrasonic cleaning

Ultrasonic cleaning

Oltrasonic cleaning is used to clean the cavity surface. First, 1% of liquinox is used at 50℃ for more than half an hour. Second, DI water is used at 50℃ for more than half an hour.

Buffered chemical polishing

BCP main system

Acid DI Water

Polishing

Same ports are used.

Etchant : 49%HF + 69%HNO3 + 85%H3PO4 (1:1:2 in volume fraction)

Etch rate : $0.7 \sim 1 \mu m/min$ Etch amount : over 120 μm Temperature control : lower 15°C Nb concentration in acid : lower 15 g/l Parts : dipping Cavity : closed loop circulation

0-ZAO

Rinsing

Inner surface after BCP

Picture of inner surface of cavity

Inner surface of the cavity is inspected after BCP. Uniform surface roughness is important to prevent the sharp edge on RF surface.

0

High temperature baking

High temperature baking

Solution of the second second

DI water supply

Deionized water (DI) system

Sesistivity of DI water should be higher than 17.5 $M\Omega$ cm at 25 °C.

High pressure rinsing

High pressure rinsing (HPR) system

- HPR is used to remove residual particles on the surface of cavity.
 - High pressure filter : 0.5 /m
 - Water pressure : 100~150 bar
 - Nozzle diameter: 0.5 mm
 - Nozzle rotation speed : 20 rpm
 - Nozzle lifting speed : 5 cm/min
 - Rinsing time : over 10 hour/cavity

Fabricated dressed cavity

Fabricated dressed cavity

Liquid helium vessel (jacket) is attached on the outside of the cavity and then additional light-BCP and HPR are performed after attaching the jacket.

Low temperature baking

Preparation for the low temperature baking of superconducting cavities

Solution Low temperature baking is done at 120°C for 48 hours before vertical test.

Vertical test facility

Vertical test facility

Calibration is done at 4.2 K after fast cool down. Q slope is measured after cavity conditioning.

Q slope measurement for **QWR** 1E+10 1E+09 ð 1E+08 0 0 1E+07 2 6 10 12 8 0 Δ Eacc (MV/m) $[Q = 2.4 \times 10^8 at E_{acc} = 6.1 MV / m]$

Q slope measurement as a function of accelerating electric field for the quarter-wave resonator (QWR) cavities at 4.2 K. This data shows the failed and passed QWR. The total number of the QWRs is 22 and all of them are passed.

Q slope measurement as a function of accelerating electric field for the half-wave resonator (HWR) cavities at 2 K. This data shows the failed and passed HWR. The total number of the HWRs is 106 and all of them are passed.

Rare Isotone

Science Projec

Frequency change for HWR

٢	Parameter	Unit	QWR	HWR
	Frequency	MHz	81.25	162.5
	Beta		0.047	0.12
	L _{eff}	m	0.173	0.221
	Q 0	10 ⁹	0.24	2.3
	Q ₀ *Rs	Ω	18	37
	R/Q	Ω	470	295
	E _{acc}	MV/m	6.1	6.6
	E_{peak}/E_{acc}		5.7	5.3
	B_{peak}/E_{acc}	mT/(MV/m)	10.4	9.0

QWR and HWR cryomodules

QWR cryomodule

HWR A cryomodule

HWR B cryomodule

Pictures for installed QWR and HWR CM in tunnel

RAON first beam was observed with the beam energy of 0.7 MeV/u and the beam current of 30 uA for Ar(9+) through five QWR CMs at 15:00 on October 7, 2022.

Summary

- We have shown the procedures to make superconducting cavities.
- Raw material, single and sub parts, stack-up test, electron beam welding, fabricated bare cavity, ultrasonic cleaning, buffered chemical polishing, inspection for inner part of the cavity, high temperature baking, high pressure water rinsing, vertical test, Q slope measurement, frequency change for process, and cryomodules are presented in this talk.

Questions

IHEP in China, improved the quality factor of superconducting cavity higher than 10¹⁰ by applying electro polishing (EP) techniques, which remove field emission site effectively on the surface of the superconducting cavity.

Let us know how the electro polishing (EP) techniques are performed.

We thanks to Jongdae Joo, Yoochul Jung, Juwan Kim, Sungmin Jeon, Hyunik Kim, Myeun Kwon, and Seung-Woo Hong.

CRAC

are Isoton

Thank you for your attention

