

Thin film QWRs performance for ALPI-SPES upgrade at INFN-LNL: first results

G. Keppel, on behalf of SRF LNL groups

Link Station Hall Aomori

October 11-14, 2022

Istituto Nazionale di Fisica Nucleare

Outline

Thin film QWR @LNL

- Introduction: ALPI evolution over the years
- The SPES Project @LNL
- ALPI Upgrade for SPES project
- The TANDEM PIAVE ALPI Complex
- QWR Status @LNL
 - Sputtering and Chemistry Facility Upgrade
 - Back extrusion cavities
 - Results

Conclusion

Outlook - Introduction

- ALPI's design started in 1990
- ALPI started operation in 1994-98 with Pb/Cu technology
- Meanwhile from 1993:
 - R&D on low β (0,055) 80 MHz bulk Nb resonators (thanks A. Facco)
 - R&D on Nb/Cu medium β (0,11) 160 MHz resonators (thanks V. Palmieri, S. Stark, A. Porcellato)

Outlook - Introduction

Nb/Cu resonators are definitively a mainstay of this facility, given the performance and stability over the years.

We have faced a generation transition in the recent years, which has represented a new challenge

Medium β cavity test 2007 -> 2021

FC 40 cavity from CR7 2007 vs. 2021

- Same Q_0
- Same RF performance
- Difference at high filed due to low conditioning in 2021

ALPI-SPES upgrade

Selective Production of Exotic Species

 Second generation ISOL facility for nuclear physics: Production & re-acceleration of exotic beams

 Research and Production of Radio-Isotopes for Nuclear Medicine

 Accelerator-based neutron source (Proton and Neutron Facility for Applied Physics)

δ

Nuclear Medicine

SPES Facility @ LNL

New High power compact CYCLOTRON 70 MeV 750 microA (BEST company)

New configuration of High power ISOL System (8 kW Target ion source)

ALPI superconductive LINAC (up-graded) for RIB's reacceleration

INFN-Legnaro: a lab for stable and presently unstable heavy ion beams, and RI production

SPES layout

TTC Meeting Link Station Hall Aomori – G. Keppel – keppel@Inl.infn.it – LNL – INFN – 11/10/2022

Beam Energies with full SPES Upgrade for Piave-Tandem-ALPI

QWR Status @LNL

R&D activity for ALPI upgrade

After > 15 years Nb/Cu with a new team...

Vacuum systems refurbishing and upgrade:

• QWR and plates sputtering systems.

Cryostat for off-line test.

- Re-definition on coating parameters for Nb/Cu high-β QWRs and plates (for QWR and RFQ) due to:
 - Upgrade of the system (new pumps, mass flow implementation, software control, DC and BIAS power supplies etc.).

QWR diode sputtering re-engineering

Upgrades started from facility re-modelling using 3D software Re-engineering of:

- Vacuum system.
- Vacuum electric connections.
- Thermocouple design and connection.
- Process gasses.
- Control system.

Scheme of the QWR diode sputtering system.

System compound

- 1 Niobium cathode
- 2 QWR cavity
- 3 Titanium ground nets
- 4 Copper counter electrode

3D model of the QWR sputtering system: (a) – side view, (b) – bottom view.

QWR diode sputtering system upgrade

Refurbishing of LNL QWR coating system. Major upgrade on:

- Vacuum pumps
- Ar Mass flow controller
- Power supplies (sputtering and BIAS)
- Backing controls and cavity heating
- NI PLC-PC control System

Automatic sputtering control and data acquisition

Tumbling and Chemistry plant upgrade

EP facility

EP software

- Tumbling system maintenance
- Chemistry plant upgrade (new PLC control system)
- New stripping facility

0

Cavity EP

QWR Production for CR21 and CR22

Classical production tecnology

Cold back extrusion applied to QWR resonators

QWR preformed ready for machining

DD0 test cavity and DD1 produced with this technique

Cold back extrusion applied to QWR resonators

Back extrusion techniques advantages:

- Reduction on copper usage
- Surface finishing close to EP finishing
- Cheaper machining procedure
 - Machining of top and inner part of antenna
 - Machining of beam ports
- Good material performance

Back extrusion observed disadvantage:

Imperfection on cavity bottom

Cavity Coating

Baking procedure	
Chamber temperature [°C]	120 - 220
Substrate temperature [°C]	400
Baking time [h]	48 - 96

Sputtering procedure	
Sputtering pressure [mbar]	0,08 - 0,2
Cycle time [min]	15
Number of cycles	16 – 20
Cathode current [A]	3,25 – 3,5
Bias voltage [V]	-130

System maintenance

Cavity assembled on coating system

Nb cathode plasma cleaning

Coated Cavity

Cavity Plates coating

QWR plates before coating

Coated Plates

Procedure	Parameters	
Chemical preparation		
Ultrasound cleaning	In soap solution at 60 °C for 60 min;	
Surface activation	In (NH ₄) ₂ S ₂ O ₈ solution at 20 °C for 20 min;	
SUBU	SUBU at 72 °C for 4 – 6 min.	
Passivation	H_3NO_3S for 5 min.	
Water rinsing, drying, p	backaging.	
Deposition process		
Baking	Chamber temperature: 100 – 120 °C; Substrate temperature: 300 °C; Time: 48 – 96 hours.	
Sputtering	Argon pressure: 0,2 mbar; Cycle time: 6 min; Number of cycles: 10; Substrate temperature: 200 °C; Cathode current: 12 A;	

Bias voltage: -130 V;

QWR antenna delamination

- Correct positioning of the electrode uniforms electric field distribution in the top antenna area;
- Optimal QWR electrode distance to avoid delamination seems between 30–40 mm.

	-8.000e+001:-4.000e+001	
	-1.200e+002 : -8.000e+001	
	-1.600e+002 : -1.200e+002	
	-2.000e+002 : -1.600e+002	
	-2.400e+002 : -2.000e+002	
	-2.800e+002:-2.400e+002	
	-3.200e+002 : -2.800e+002	
	-3.600e+002 : -3.200e+002	
	-4.000e+002 : -3.600e+002	
	-4.400e+002 : -4.000e+002	
	-4.800e+002 : -4.400e+002	
	-5.200e+002 : -4.800e+002	
	-5.600e+002 : -5.200e+002	
	-6.000e+002 : -5.600e+002	
	-6.400e+002 : -6.000e+002	
	-6.800e+002 : -6.400e+002	
	-7.200e+002 : -6.800e+002	
	-7.600e+002 : -7.200e+002	
	<-8.000e+002 : -7.600e+002	
Den	the Dista M Malta	
Density Flot: V, Volts		

-4.000e+001 : >0.000e+000

Electric field simulation with QWR – electrode distance: (a) – without electrode; (b) – 40 mm.; (c) – 30 mm.

Delaminated cavity

No delamination

LNL cavity performance – 160 MHz @4.2K

First cycle RF cold test measurements result.

LNL cavity performance - 160 MHz @4.2K

after stripping

TTC Meeting Link Station Hall Aomori – G. Keppel – keppel@Inl.infn.it – LNL – INFN – 11/10/2022

DD back extruded cavity – 160 MHz @4.2K

Sputtering parameters vs QWR performance

Conclusions

- A major refurbishment of the sputtering systems and cavity tests facility were carried out at LNL.
- Improvements and upgrades were made in substrate preparation (mechanical and chemical).
- Intense R&D was carried out so to redefine the deposition parameters necessary to obtain cavities respecting ALPI requirements.
- 3 cavities (of the 8 needed) were ready to be installed in the cryostats
- The back extrusion technique for cavity production was explored and proved to be efficient, cost-effective and promising.

Special thanks

... to the LNL coating group and RF LNL service: O. Azzolini, G. Bisoffi, D. Bortolato, E. Chyhyrynets, E. Fagotti, E. Munaron,

C. Pira, F. Stivanello, A. Tsymbaliuk.

Thanks for your attention

keppel@Inl.infn.it

Istituto Nazionale di Fisica Nucleare